

Nuclear Criticality Safety Program Technical Program Review 26-27 March 2014

LA-UR-14-21786

MCNP Progress & Performance Improvements

Forrest Brown, Brian Kiedrowski, Jeffrey Bull

Monte Carlo Codes, XCP-3 Los Alamos National Laboratory

MCNP Verification & Validation

US DOE/NNSA Nuclear Criticality Safety Program –

What have we done for you lately?

- MCNP6.1 Release, with ENDF/B-VII.1
- Verification / Validation
- User Support & Training
- Performance Improvements
- Work in Progress

MCNP6.1 Status (1)

MCNP release by RSICC, July 2013

MCNP6.1 – production version

MCNP5-1.60, MCNPX-2.70 – old versions, no changes

Nuclear Data Libraries – including ENDF/B-VII.1 data

MCNP Reference Collection – 600+ technical reports

12,000+ copies of MCNP distributed 2001-2012

2,000+ copies of MCNP6 distributed 2013

- MCNP6.1.1 beta release, planned for June 2014
 - Primarily for DHS users, no effect on crit-safety
 - Next production release targeted for 2015
- MCNP5 & MCNPX are frozen all new development & fixes are in MCNP6
- Criticality safety community needs to transition to MCNP6

MCNP6.1 Status (2)

mcnp6

mcnp5

neutrons, photons, electrons
cross-section library physics
criticality features
shielding, dose
"low energy" physics
V&V history
documentation

New Criticality Features
Sensitivity/Uncertainty Analysis
Fission Matrix
OTF Doppler Broadening
Performance Improvements
MPI & threading improvements

mcnp5 – 100 K lines of code mcnp6 – 500 K lines of code

mcnp6

protons, proton radiography high energy physics models magnetic fields

Partisn structured mesh Abaqus unstructured mesh

mcnpx

33 other particles, heavy ions CINDER depletion, delayed n γ

High energy physics models
CEM, LAQGSM, LAHET, MARS, HETC
cosmic ray background
LLNL fission multiplicity
Single-event electron physics

Continuous Testing System ~10,000 test problems / day

Verification & Validation (1)

We do a lot of verification/validation work - all the time, especially for MCNP6:

MCNP Verification-Validation, 100+ reports on MCNP Website

Verification of MCNP6.1 for Criticality Safety Applications, LA-UR-14-xxxxx, in progress (2014).

Verification of MCNP5-1.60 and MCNP6.1 for Criticality Safety Applications, LA-UR-13-22196 (2013).

Verification of MCNP5-1.60 and MCNP6-Beta-2 for Criticality Safety Applications, LA-UR-12-210 (2012).

MCNP5-1.60 Release & Verification, Trans Am Nuc Soc 104, June 2011, LA-UR-11-00230 (2011).

ENDF/B-VII.1 Neutron Cross Section Data Testing with Critical Assembly Benchmarks & Reactor Experiments, Nuclear Data Sheets, Vol 112, No. 12, 2997-3036 [LA-UR-11-11271] (2011).

An Expanded Criticality Validation Suite for MCNP, ICNC-2011, LA-UR-11-04170 (2011).

Verification of MCNP5-1.60, LA-UR-10-05611 (2010).

Nuclear Data

Listing of Available ACE Data Tables, LA-UR-13-21822 (2013)

Continuous Energy Neutron Cross Section Data ... ENDF/B-VII.1, LA-UR-13-20137 (2013).

LANL Data Testing Support for ENDF/B-VII.1, LA-UR-12-20002 (2012).

ENDF/B-VII.1 Nuclear Data....., Nuclear Data Sheets, Vol 112, No. 12, 2887-2996 (2011).

ENDF/B-VII.0: ... Nuclear Data ..., Nuclear Data Sheets, Vol. 107, Number 12 (2006)

New ACE-Formatted Neutron and Proton Libraries Based on ENDF/B-VII.0, LA-UR-08-1999 (2008).

Release of New MCNP $S(\alpha,\beta)$ Library ... ENDF/B-VII.0, LA-UR-08-3628 (2008).

Verification & Validation (2)

Table 1. MCNP6.1 and MCNP6.1.1-Beta Results for Analytic Keff Benchmarks

		Analytic	MCNP_R	esults
Case	Name	keff	keff	std
prob11	Ua-1-0-IN	2.25000	2.25000	0.00000
prob14	Ua-1-0-SP	1.00000	1.00006	0.00010
prob18	Uc-H2O(2)-1-0-SP	1.00000	1.00005	0.00011
prob23	UD20-1-0-CY	1.00000	1.00000	0.00006
prob32	PUa-1-1-SL	1.00000	0.99995	0.00011
prob41	UD20b-1-1-SP	1.00000	1.00003	0.00007
prob44	PU-2-0-IN	2.68377	2.68377	0.00003
prob54	URRa-2-0-SL	1.00000	1.00007	0.00013
prob63	URRd-H2Ob(1)-2-0-ISLC	1.00000	0.99993	0.00006
prob75	URR-6-0-IN	1.60000	1.59999	0.00001

Results are identical for MCNP6.1 and MCNP6.1.1-Beta.

Wall-clock time, using 8 threads on Mac Pro:

MCNP6.1 151 min
MCNP6.1.1-beta 87 min

Verification & Validation (3)

mcnp5-1.60 + ENDF/	B-VII.0	mcnp5+Int-10	mcnp5_Int-11	mcnp5_Int-12	mcnp6_Int-12
		deltak std	keff std	deltak std	deltak std
U233 Benchmarks	JEZ233	0.0000 (8)	0.9989 (5)	0.0000 (8)	0.0000 (8)
	FLAT23	0.0000 (9)	0.9990 (7)	0.0000 (9)	0.0000 (9)
	UMF5C2	0.0000 (8)	0.9931 (5)	0.0000 (8)	0.0000 (8)
	FLSTF1	0.0000 (15)	0.9830 (11)	0.0000 (15)	0.0000 (15)
	SB25	0.0000 (14)	1.0053 (10)	0.0000 (14)	0.0000 (14)
	ORNL11	0.0000 (5)	1.0018 (4)	0.0000 (5)	0.0000 (5)
HEU Benchmarks	GODIVA	0.0000 (8)	0.9995 (5)	0.0000 (8)	0.0000 (8)
	TT2C11	0.0010 (10)	1.0008 (7)	0.0000 (9)	0.0000 (9)
	FLAT25	0.0000 (9)	1.0034 (7)	0.0000 (9)	0.0000 (9)
	GODIVR	0.0000 (9)	0.9990 (7)	0.0000 (9)	0.0000 (9)
	UH3C6	0.0000 (11)	0.9950 (8)	0.0000 (11)	0.0000 (11)
	ZEUS2	0.0002 (9)	0.9972 (7)	0.0000 (9)	0.0000 (9)
	SB5RN3	0.0000 (18)	0.9985 (13)	0.0000 (18)	0.0000 (18)
	ORNL10	0.0000 (5)	0.9993 (4)	0.0000 (5)	0.0000 (5)
IEU Benchmarks	IMF03	0.0000 (8)	1.0029 (5)	0.0000 (8)	0.0000 (8)
	BIGTEN	0.0000 (7)	0.9945 (5)	0.0000 (7)	0.0000 (7)
	IMF04	0.0000 (8)	1.0067 (5)	0.0000 (8)	0.0000 (8)
	ZEBR8H	-0.0001 (7)	1.0196 (5)	0.0000 (7)	0.0000 (7)
	ICT2C3	0.0000 (9)	1.0037 (7)	0.0000 (9)	0.0000 (9)
	STACY36	0.0000 (8)	0.9994 (5)	0.0000 (8)	0.0000 (8)
LEU Benchmarks	BAWXI2	0.0000 (9)	1.0013 (7)	0.0000 (9)	0.0000 (9)
	LST2C2	0.0000 (8)	0.9940 (5)	0.0000 (8)	0.0000 (8)
Pu Benchmarks	JEZPU	0.0000 (8)	1.0002 (5)	0.0000 (8)	0.0000 (8)
	JEZ240	0.0000 (8)	1.0002 (5)	0.0000 (8)	0.0000 (8)
	PUBTNS	0.0000 (8)	0.9996 (5)	0.0000 (8)	0.0000 (8)
	FLATPU	0.0000 (9)	1.0005 (7)	0.0000 (9)	0.0000 (9)
	THOR	0.0000 (9)	0.9980 (7)	0.0000 (9)	0.0000 (9)
	PUSH2O	0.0000 (9)	1.0012 (7)	0.0000 (9)	0.0000 (9)
	HISHPG	0.0004 (7)	1.0118 (5)	0.0000 (8)	0.0000 (8)
	PNL2	0.0000 (12)	1.0046 (9)	0.0000 (12)	0.0000 (12)
	PNL33	0.0000 (9)	1.0065 (7)	0.0000 (9)	0.0000 (9)
Wall-clo	ock:	34.7 min	34.0 min	30.5 min	38.5 min
Rel. Spe	eed:	0.98	1.00	1.11	0.88

Verification & Validation (4)

VERIFICATION_KEFF Suite – 10 analytical problems with exact K_{eff} results

MCNP6.1, Intel-12 F90
 All results match

VALIDATION_CRITICALITY Suite – 31 ICSBEP Cases, ENDF/B-VII.0

MCNP5 Intel-10 vs Intel-12:
 4 diffs, within statistics

- MCNP5 & MCNP6, Intel-12: All results match

VALIDATION_CRIT_EXPANDED Suite – 119 ICSBEP Cases, ENDF/B-VII.0

Shortened Problems

MCNP5 Intel-10 vs Intel-12:
 1 diff, within statistics

- MCNP5 & MCNP6, Intel-12: All results match

Standard Problems

MCNP5 & MCNP6, Intel-12: 4 diffs, within statistics

CRIT_LANL_SBCS Suite - 194 ICSBEP Cases, ENDF/B-VI

MCNP5 vs MCNP6, Intel-10.1: 187 match, 4 diffs $< 1\sigma$, 3 diffs $< 2\sigma$

MCNP5 (2013, Intel-12) vs

MCNP5 (2003, Intel-9) 142 match, 42 diffs $< 1\sigma$, 10 diffs $< 2\sigma$

Verification & Validation (5)

Very thorough testing of MCNP6.1 on many computer platforms:

Brown, Kiedrowski, Bull, "Verification of MCNP5-1.60 and MCNP6.1 for Criticality Safety Applications", LA-UR-13-22196 (2013).

Conclusion: MCNP6.1 is solid & reliable for crit-safety calculations

- MCNP6.1 impact on criticality calculation results → none
 - All MCNP5 KCODE criticality features preserved, + new features
 - Matches results with MCNP5 for criticality suites
- Current MCNP6.1.1 beta exactly matches MCNP6.1 for crit-safety
- MCNP6.1 is 20-30% slower than MCNP5
 - Performance improvements address this, later in this talk
 - MCNP6.1.1 speed is comparable to or faster than MCNP5

User Support & Training (1)

12,000+ copies of MCNP distributed 2001-2012
 2,000+ copies of MCNP6 distributed 2013

MCNP Forum - User-group, beginners & experts, >1000 members

- Classes
 - Theory & Practice of Criticality Calculations with MCNP
 - FY13: 3 classes (including special class for LANL NCS group certification)
 - FY14: 2 classes (both with some LANL NCS staff)
 - Introduction to MCNP
 5 classes FY13, 5 classes FY14
 - Advanced Variance Reduction
 1 class each FY
 - Intro + Variance Reduction
 Kirtland AFB 2014
- Conferences & Journals
 - M&C 2013, NCSD 2013, SNA+MC 2013, PHYSOR 2014
 - ANS Washington, Reno, Anaheim
- Other: website, reference collection, summer students

Performance Improvements (1)

MCNP6.1

- Preserves all criticality features
- ENDF/B-VII.1 data libraries
- RSICC release July 2013

MCNP6 Status

- Many new capabilities
- Last few years focus on features, merger, testing, release
- Needs upgrade of core software

Path forward – MCNP 2020

- Concerted effort to modernize the codebase, upgrade foundations
- Goals: modular, flexible, faster
- Necessary for MCNP to survive into the 2020's

MCNP 2020

- Improve performance
 - 30-50% slowdown for MCNP6.1
 - Goal: 2X speedup within 2 years
- Upgrade core MCNP6 software
 - Restructure, clean up coding
 - Reorganize data structures
 - Evolution, not revolution
 - Reduce future costs for new development & maintenance
 - Goal: sustainable code

Prepare for future

- New computers massive parallel but less memory per core
- Improve MPI & thread parallelism
- Goal: flexible, adaptable code

Performance Improvements (2)

Create a set of timing tests

- Stress different portions of MCNP coding
- Helps determine effect of specific code optimizations

Initial performance improvements

- Eliminate strided f90 vector ops
- Inline binary search, for neutron xsec routines
- IF-guards, to avoid calling accessor functions
- Inline code some other sections of coding
- Eliminate unnecessary clearing of certain scratch arrays
- Hash-based xsec energy lookups (algorithm change)
- no work yet on tracking & geometry, or photon/electron routines
- no work planned for any high energy physics

Intel compiler options

- Higher Fortran optimization levels do <u>not</u> provide improvements
- Using –O2 instead of –O1 provides only ~ 0-5% speedup, but some test problems segfault

Performance Improvements (3)

2013-09-11

Tests run on Mac Pro, 3.0 GHz Xeon, 2 quad-cores, with 8 threads. ENDF/B-VII.1, discrete S(a,b)

CRITICALITY PROBLEMS

ks1.txt	3D PWR, OECD perf. bench., Kord Smith, 60 isotopes, no tallies
ks2.txt	ks1.txt, 10 isotopes, no tallies
ks3.txt	ks1.txt, 10 isotopes, fmesh tallies
ks4.txt	ks1.txt, 60 isotopes, fmesh tallies
baw1.txt	BAWXI2 ICSBEP problem, 31 isotopes, no tallies
baw2.txt	BAWXI2 ICSBEP problem, 31 isotopes, fmesh tallies
fvf.txt	fuel storage vault, from OECD convergence bencharks, 9 isotopes
g1.txt	Godiva problem, 3 isotopes
g2.txt	Godiva problem, 423 isotopes
pin.txt	AECL pin cell, with FPs. 147 isotopes

FIXED-SOURCE PROBLEMS

void1.txt	ks1.txt, with VOID card & no tallies
void2.txt	baw1.txt, with VOID card & no tallies
void3.txt	fvf.txt, with VOID card & no tallies
det1.txt	3D porosity tool, Reg. problem 12, neutrons, weight windows, F4 tallies
med1.txta	medical physics, modified 3D Zubal head, photons
pht1.txt	PHTVR cylindrical test problem, photons

Performance Improvements (4)

•	Speed	lups from recent			Speedups	
	•	mance improvements	Problem	6/5	NEW/5	NEW/6
			Criticali	ty		
	6/5	mcnp6.1 vs mcnp5	ks1	0.88	1.54	1.76
	0 / 0	monpon to monpo	ks2	0.40	0.85	2.13
	NEW/5	mcnp6.1.1 vs mcnp5	ks3	0.63	0.85	1.35
			ks4	0.72	0.98	1.36
	NEW/6	mcnp6.1.1 vs mcnp6.1	baw1	0.44	0.97	2.19
			baw2	0.58	0.93	1.59
	_		fvf	0.38	0.77	2.04
	5:	mcnp5-1.60	g1	0.93	1.05	1.14
	6:	mcnp6.1, released	g2	0.82	1.80	2.20
			pin	0.79	1.36	1.73
	NEW:	1 /	Other			
		+ no strides	void1	0.24	0.72	3.03
		+ inlining	void2	0.14	0.59	4.11
		+ if guards	void3	0.26	0.71	2.72
		+ thrd-priv. common	det1	0.45	0.75	1.67
		+ etc.	med1	0.57	0.65	1.15
		+ hash-based xs lookup	pht1	0.58	0.71	1.22

Performance Improvements (5)

- Timing results for the standard VALIDATION_CRITICALITY test suite with ENDF-B/VII data
 - Mac Pro (3 GHz, 8 cores), Intel 12.0 f90, run with 8 threads
 - Measured wall-clock times, including data I/O:

mcnp5 release 34.7 min mcnp6.1 release 43.9 min

mcnp6 NEW 27.9 min

- → 1.57 X speedup over mcnp6.1
- → 1.24 X speedup over mcnp5

Performance Improvements (6)

Speedups - NEW vs mcnp6.1

measured by Jeff Bull for mcnp performance test problems

		<u>-</u>	
	MCNP6 1.0	MCNP6	
Test	Release (min)	NEW (min)	Ratio
BAWXI2	63.58	14.55	4.37
mode p e in air	12.88	12.73	1.01
GODIVA	22.50	21.40	1.05
100M lattice cells in void	58.48	11.32	5.17
mode n p e in air	9.70	9.27	1.05
mode p in air	7.29	6.06	1.20
Pulse height tally	27.41	22.79	1.20
Radiography	33.30	31.06	1.07
Mode n in air with			
750,000 tally bins	19.25	16.26	1.18
Well log (problem 12 from Regression suite)	57.89	30.27	1.91
moni negression suite)	37.83	30.27	1.31

Work in Progress (1)

MCNP 2020

- Improve performance
 - Focus on geometry tracking
- Upgrade core MCNP6 software
 - Restructure, clean up coding
 - Reorganize data structures
 - Evolution, not revolution
 - Reduce future costs for new development & maintenance
 - Goal: sustainable code
- Prepare for future
 - New computers massive parallel but less memory per core
 - Improve MPI & thread parallelism
 - Goal: flexible, adaptable code

Parallel MPI & Threading

- For criticality calculations
 - Reduce the amount of data exchanged at MPI rendezvous
 - Tally server nodes
- MPI improvements
 - Eliminate synchronization
 - Asynchronous MPI messages
 - Improve Fortran/C interface
- OpenMP threading improvements
 - Replace private thread-safe storage for certain large arrays by OpenMP critical sections
 - Use OpenMP atomic operations with shared tally arrays

Physics & Temperature Dependence

- Implement modified free-gas scatter, to accurately model resonance upscattering for epithermal neutrons
- Full temperature dependence of S(a,b) thermal scattering
- Investigate coupling MCNP into multiphysics calculations

Fission Matrix

- Automatically determine source convergence, without user input
- Apply to subcritical multiplication problems
- Accelerate source convergence

Continuous-energy Sensitivity/Uncertainty Analysis

- Uses adjoint-weighted perturbations
- Computes sensitivity coefficients for cross sections, fission, & scattering laws
- Can directly compare to TSUNAMI multigroup s/u results
- See Kiedrowski presentation

MOX Lattice: U-238 Total

Support for LANL PF-4 Nuclear Criticality Safety

- High priority
- See Kiedrowski presentation

Summary

- MCNP6.1 & ENDF/B-VII.1 released
- Impact on Criticality Calculations → none
 - All KCODE criticality features same as for MCNP5
 - Matches results with MCNP5 for criticality suites
- Monte Carlo team will support MCNP6, no new features or releases of MCNP5 or MCNPX
- MCNP6 speed improved by 1.2 4 X for crit-safety
- More performance improvements in progress
- Criticality-safety community needs to plan for MCNP5 → MCNP6 transition over the next few years